Comparing composite likelihood methods based on pairs for spatial Gaussian random fields

نویسندگان

  • Moreno Bevilacqua
  • Carlo Gaetan
چکیده

In the last years there has been a growing interest in proposing methods for estimating covariance functions for geostatistical data. Among these, maximum likelihood estimators have nice features when we deal with a Gaussian model. However maximum likelihood becomes impractical when the number of observations is very large. In this work we review some solutions and we contrast them in terms of loss of statistical efficiency and computational burden. Specifically we focus on three types of weighted composite likelihood functions based on pairs and we compare them with the method of covariance tapering. Asymptotics properties of the three estimation methods are derived. We illustrate the effectiveness of the methods through theoretical examples, simulation experiments and by analysing a data set on yearly total precipitation anomalies at weather stations in the United States.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Geostatistics of extremes

We describe a prototype approach to flexible modelling for maxima observed at sites in a spatial domain, based on fitting of max-stable processes derived from underlying Gaussian random fields. The models we propose have generalized extreme-value marginal distributions throughout the spatial domain, consistent with statistical theory for maxima in simpler cases, and can incorporate both geostat...

متن کامل

Fast sampling from a Gaussian Markov random field using Krylov subspace approaches

Many applications in spatial statistics, geostatistics and image analysis require efficient techniques for sampling from large Gaussian Markov random fields (GMRFs). A suite of methods, based on the Cholesky decomposition, for sampling from GMRFs, sampling conditioned on a set of linear constraints, and computing the likelihood were presented by Rue (2001). In this paper, we present an alternat...

متن کامل

Norges Teknisk-naturvitenskapelige Universitet Fitting Gaussian Markov Random Fields to Gaussian Fields Fitting Gaussian Markov Random Fields to Gaussian Fields Tmr Project on Spatial Statistics (erb-fmrx-ct960095) for Support and Inspiration

SUMMARY This paper discusses the following task often encountered building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in observed data or consistent with prior knowledge. The Markov property is essential in design of computational efficient Markov chain Monte Carlo algorithms used to analyse suc...

متن کامل

Tukey g-and-h Random Fields

We propose a new class of trans-Gaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015